F-Index of some graph operations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reformulated F-index of graph operations

The first general Zagreb index is defined as $M_1^lambda(G)=sum_{vin V(G)}d_{G}(v)^lambda$. The case $lambda=3$, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as $EM_1^lambda(G)=sum_{ein E(G)}d_{G}(e)^lambda$ and the reformulated F-index is $RF(G)=sum_{ein E(G)}d_{G}(e)^3$. In this paper, we compute the reformulated F-index for some grap...

متن کامل

Computing GA4 Index of Some Graph Operations

The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v     , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G   u v    , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...

متن کامل

Index of Some Graph Operations

Let G = (V, E) be a graph. For e = uv ∈ E(G), nu(e) is the number of vertices of G lying closer to u than to v and nv(e) is the number of vertices of G lying closer to v than u. The GA2 index of G is defined as ∑ uv∈E(G) 2 √ nu(e)nv(e) nu(e)+nv(e) . We explore here some mathematical properties and present explicit formulas for this new index under several graph operations.

متن کامل

The Generalized Wiener Polarity Index of some Graph Operations

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

متن کامل

Reformulated F-index of graph operations

The first general Zagreb index is defined as Mλ 1 (G) = ∑ v∈V (G) dG(v) λ where λ ∈ R − {0, 1}. The case λ = 3, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as EMλ 1 (G) = ∑ e∈E(G) dG(e) λ and the reformulated F-index is RF (G) = ∑ e∈E(G) dG(e) 3. In this paper, we compute the reformulated F-index for some graph operations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics, Algorithms and Applications

سال: 2016

ISSN: 1793-8309,1793-8317

DOI: 10.1142/s1793830916500257